Fuzzy time series forecasting method based on Gustafson-Kessel fuzzy clustering

نویسندگان

  • Erol Egrioglu
  • Çagdas Hakan Aladag
  • Ufuk Yolcu
  • Vedide R. Uslu
  • N. Alp Erilli
چکیده

Fuzzy time series forecasting methods do not require constraints found in conventional approaches. In addition, due to uncertainty that they contain, many time series to be forecasted should be considered as fuzzy time series. Fuzzy time series forecasting models consist of three steps as fuzzification, identification of fuzzy relations and defuzzification. Although most of the time series encountered in real life contain seasonal component, only few of these fuzzy time series approaches analyze seasonal fuzzy time series. Even though all these studies have various advantages, their biggest disadvantage is to take into consideration only the fuzzy set having the highest membership value rather than the membership value of observations belonging to each fuzzy set. This situation conflicts to fuzzy set theory and causes the loss of information thus, negatively affects on the forecasting performance. In this study, a seasonal fuzzy time series forecasting model, in which Gustafson-Kessel fuzzy clustering technique in fuzzification stage is initially used and membership values are taken into account in both the determining fuzzy relations and the defuzzification stages is proposed. The proposed method is applied to real life seasonal time series and substantial results are obtained.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Recursive clustering based on a Gustafson-Kessel algorithm

In this paper an on-line fuzzy identification of Takagi Sugeno fuzzy model is presented. The presented method combines a recursive Gustafson–Kessel clustering algorithm and the fuzzy recursive least squares method. The on-line Gustafson–Kessel clustering method is derived. The recursive equations for fuzzy covariance matrix, its inverse and cluster centers are given. The use of the method is pr...

متن کامل

Comparison Between Unsupervised and Supervise Fuzzy Clustering Method in Interactive Mode to Obtain the Best Result for Extract Subtle Patterns from Seismic Facies Maps

Pattern recognition on seismic data is a useful technique for generating seismic facies maps that capture changes in the geological depositional setting. Seismic facies analysis can be performed using the supervised and unsupervised pattern recognition methods. Each of these methods has its own advantages and disadvantages. In this paper, we compared and evaluated the capability of two unsuperv...

متن کامل

Fuzzy Databases Using Extended Fuzzy C-Means Clustering

In recent years, the Fuzzy Relational Database and its queries have gradually become a new research topic. Fuzzy Structured Query Language (FSQL) is used to retrieve the data from fuzzy database because traditional Structured Query Language (SQL) is inefficient to handling uncertain and vague queries. The proposed model provides the facility for naïve users for retrieving relevant results of no...

متن کامل

A Generalization of Gustafson-Kessel Algorithm using a New Constraint Parameter

In this paper one presents a new fuzzy clustering algorithm based on a dissimilarity function determined by three parameters. This algorithm can be considered a generalization of the Gustafson-Kessel algorithm for fuzzy clustering.

متن کامل

Hybrid Intelligent Systems ADAPTIVE GUSTAFSON-KESSEL FUZZY CLUSTERING ALGORITHM BASED ON SELF-LEARNING SPIKING NEURAL NETWORK

The Gustafson-Kessel fuzzy clustering algorithm is capable of detecting hyperellipsoidal clusters of different sizes and orientations by adjusting the covariance matrix of data, thus overcoming the drawbacks of conventional fuzzy c-means algorithm. In this paper, an adaptive version of the Gustafson-Kessel algorithm is proposed. The way to adjust the covariance matrix iteratively is introduced ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Expert Syst. Appl.

دوره 38  شماره 

صفحات  -

تاریخ انتشار 2011